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Abstract

In this paper we investigate the conservation of the angular momentum for the Euler equations of compressible
gas dynamics. We propose a method able to discretize, besides to the standard quantities, i.e. mass, inertial
momentum and energy, the angular momentum, and we study the positive effects of considering this
adjoint physical variable on the entire system. We propose both a master-slave approach and some coupled
approaches in order to exploit the benefit provided by explicitly considering the conservation law regarding
the angular momentum (redundant from the analytical point of view, but extremely interesting from numerical
purposes, especially for vortical flows). Simple test cases open important issues in terms of imposition of
appropriate boundary conditions and proper definition of the angular momentum, in particular when the
center of rotation is not known a priori. For this last reason, we introduce a detector able to reconstruct
locally the centers of rotation or of explosion of a generic problem given its velocity field and its pressure
field. This detector provides supplementary information over the studied system and can also be applied
for a convenient definition of the angular momentum. A new Kidder solution with rotation is derived in
cylindrical coordinates.

Key words: Euler equations of compressible gas dynamics, angular momentum preserving scheme, rotation
and explosion problems, hyperbolic conservation laws, vortical flows, center-detector.

1. Introduction

This work intends to contribute to a long lasting debate in computational fluid dynamics which is the
enhancement of the accuracy of compressible fluid solvers for vortical flows. In the literature one can
distinguish two main approaches: the first one based on vorticity and the second one based on angular
momentum. For a general review on vorticity in standard finite volume schemes we refer to Roe [19] and
for the case of Lagrangian methods we mention the seminal work of Dukowicz and Meltz in [11]. Other
references are in the recent contribution [18]. Concerning angular momentum, we cite the recent results of
Després and Labourasse [10] where the angular momentum is added to the system (with an initial approach
similar to the one of this paper) and treated with a partial Discontinous Galerkin discretization. In particular,
they show that considering the angular momentum enhances the accuracy of implosion calculations and
minimizes the mesh imprint. In this work, we address angular momentum preservation in the framework
of Eulerian and Arbitrary Lagrangian Eulerian methods [3]: these methods are characterized by a moving
computational domain whose velocity can be set to zero to reproduce the Eulerian case, or can be chosen as
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soon as possible equal to the local fluid velocity, as it is in the pure Lagrangian context, or slightly modified
in an arbitrary way in order to maintain a better quality of the mesh.

There exists a wide range of applications for which the conservation of angular momentum is an issue. A
first example is fluid simulations of the atmosphere around the earth for which the angular momentum of
the atmosphere may interact with the angular momentum of the planet itself, we refer to [17] for an early
work on the theme. A completely different physical problem is rotation of MHD flows in Tokamaks for
which angular preservation is clearly a fundamental issue. It is addressed in the context of MHD solvers,
either full MHD or reduced MHD, and a general review can be found in [13]. We notice that finite volume
techniques are rarely used in the Tokamaks community. On the other hand Godunov solvers are widely
used for astrophysical flows, and angular momentum is a key feature for an accurate numerical treatment of
rotation of stars and planets: many works are devoted to this issue on Cartesian fixed grids and we quote
only on few of them such as [16, 20]. In this context, Käppeli and Mishra have recently proposed a Godunov
scheme in the Eulerian frame to address the issue of angular momentum conservation [14]. A last case
regards the chemical reactions into the combustion chamber of engines [1]: in this situation the initial stage
of turbulent flows is dominated by strong vortexes inside the flow and so its study could be improved taking
into account the angular momentum.

What we propose here is to exploit in various ways the redundant conservation law that can be written for
the angular momentum. Indeed, our study is based on considering an augmented Euler system of equations
where we take into account both the inertial momentum conservation law as well as the angular momentum
conservation law. Then we consider various formulations of this augmented system that can be easily handled
by our code, which is able to discretize arbitrary hyperbolic systems written in the form

∂Q
∂t

+ ∇ · F(Q, x) = S(Q), x ∈ Ω(t) ⊂ R2, Q(t, x) ∈ Rν,

where Q is the vector of the conserved quantities and F(Q, x) a non linear flux tensor that depends both
on Q and on the position x. In particular, three formulations will be presented in this paper, the master-
slave approach, the global-coupling and the local-coupling. In the master-slave approach we propose a
straightforward discretization of the augmented system, where the angular momentum will have no influence
on the other conserved variables. In the global-coupling the angular momentum is strongly coupled with
the entire system: in this case we will assume the a priori knowledge of a fixed center of rotation. Finally,
for the local-coupling we will explore a solution in which the rotation center varies locally. In these three
approaches ν = 5 whereas for the initial Euler system ν = 4.

The validation of the different algorithms will be performed with three different types of test problems.
The first one is standard and is used to compare the results for the three approaches (master-slave approach,
global-coupling and local-coupling). It is a solid body rotation of a gas with constant density. Density and
velocity have been chosen in such a way that also the angular momentum is constant. As computational
domain we consider a ring centered in the origin with radius r ∈ [1, 2] and the initial condition, that
corresponds also to the stationary analytical solution, is the following

ρ = 1, u =

(
−y

x2 + y2 ,
x

x2 + y2

)
, p = −

1
2(x2 + y2)

+ 1, w = 1. (1)

In Table 1 with this test, we illustrate the interest of solving the angular momentum within an augmented
system. The second type of test is made of variants of the first one, to illustrate specific features of the
different methods. The third test problem is a generalization of the Kidder test problem [5] which is
emblematic of strong implosion in stars or inertial confinement devices. In our study we extend the physics
considered in the standard Kidder problem by adding non zero angular velocity. To our knowledge, this
new analytical solution in cylindrical coordinates which combines compression and rotation is original with
respect to the literature.

The paper is organized as follows. First in Section 2, we introduce the augmented system of equations.
The fundamental principles of a Finite Volume method are provided in Section 3. In Section 4 we introduce
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Table 1: In the central column (without Angular Momentum Conservation – without AMC) we report the error in L2 norm between the
analytical value of the angular momentum and the one obtained at later times by computing a posteriori w = u ∧ (x − xc), by solving a
system of size ν = 4. The errors reported in the right column (with AMC) are obtained with the master-slave approach (see Section 4),
by solving an augmented system of size ν = 5. We have employed a mesh of 1600 elements and both a method of order 1 and 2. This
simple test proves that post-processing may generate important errors with respect to direct full computation of an augmented system.

without AMC (ν = 4) with AMC (ν = 5, master-slave)
time order 1 order 2 order 1 order 2

1 3.2 5.1E-3 2.6E-16 1.6E-16
5 7.2 3.0E-2 1.0E-15 8.2E-16

10 9.4 5.3E-2 2.1E-15 1.7E-15
20 - 1.0E-1 3.7e-15 3.2E-15

the master-slave formulation. Section 5 is devoted to the global-coupling algorithm. The principles of
a center-detector are introduced in Section 6. Next, Section 7 is devoted to the local-coupling method.
The coupling with some elementary ALE techniques is investigated in Section 8. In Section 9 we study a
modified Kidder problem with rotation. In Section 10 we conclude giving an outlook on future extension of
our research investigations. Some details of the derivation of the Kidder solution with rotation are in the
Appendix A.

2. Augmented Euler equations

Let us recall the standard Euler equations of compressible gas dynamics in two dimensions of space
which represent a strictly hyperbolic system

∂tρ + ∇ · (ρu) = 0,
∂t (ρu) + ∇ · (ρu ⊗ u) + ∇p = 0,
∂t (ρe) + ∇ · (ρue + pu) = 0.

(2)

Here ρ is the density, u = (u1, u2) is the velocity, e is the total energy density and p the pressure. For a perfect
gas one has

p = (γ − 1)
(
ρe −

1
2
ρ ||u||2

)
, γ =

cp

cv
> 1, (3)

where γ is the ratio between heats at constant pressure and volume, which is taken to be constant. In
particular, we underline that the system states ν = 4 conservation laws: one for the mass, two for the
inertial momentum and the last for the energy. In any direction defined by the unit vector n, (2) admits four
eigenvalues: un − c, un, un + c, un, where c denotes the sound speed c =

√
γp/ρ and un = u · n. From now

on, for the sake of clarity, we detail everything in 2D, but most of the ideas are general and can be easily
extended to 3D.

By choosing arbitrarily a special center point xc = (xc, yc) the angular momentum can be defined as

w = u ∧ (x − xc), where ∧ denotes the vector product. (4)

Note that xc = 0 is a possible choice and it is adopted when the center of rotation of the studied system is
unique and known for any time. For the other cases we will describe a technique to determine it. Straightaway,
a redundant conservation law for the angular momentum can be easily derived from the equations of the
inertial momentum, by computing

(x − xc)
(
∂t(ρu1) + ∂x(ρu2

1 + p) + ∂y(ρu1u2)
)
− (y − yc)

(
∂t(ρu2) + ∂x(ρu1u2) + ∂y(ρu2

2 + p)
)
, (5)
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from which we obtain
∂t (ρw) + ∇ ·

(
ρuw + p(x − xc)⊥

)
= 0. (6)

It is clear that, from an analytical point of view, this equation does not add any supplementary information to
the system, since it is directly derived from the other ones. But from a numerical point of view it provides
extra information in particular in the case of rotating systems.

Thus one can define the augmented 2D Euler system as
∂tρ + ∇ · (ρu) = 0
∂t(ρu) + ∇ · (ρu ⊗ u) + ∇p = 0
∂t(ρe) + ∇ · (ρue + pu) = 0
∂t(ρw) + ∇ ·

(
ρwu + p(x − xc)⊥

)
= 0.

(7)

The system is still hyperbolic with an extra eigenvalue equal to un.
In Sections 4, 5 and 7 we will reformulate this system in order to obtain numerical methods with different

characteristics. All of these will be automatically discretized thanks to our general Arbitrary Lagrangian
Eulerian (ALE) PDE solver which is briefly described in the next section.

3. Numerical method

For all the test cases presented in this article we have employed an up to second order accurate direct cell-
centered ALE scheme on unstructured polygonal grids (the order is specified for each employed approach).
Lagrangian remesh and remap ALE schemes are very popular and some recent works on that topic for
compressible flows can be found in [4]. In contrast to indirect ALE schemes (purely Lagrangian phase,
remesh and subsequent remap phase) there are the so-called direct ALE schemes, where the local rezoning
is performed before the computation of the numerical fluxes, hence changing directly the chosen mesh
velocity of the ALE approach, see for example [6, 7, 8] for recent works in that direction based on high order
ADER-WENO schemes.

Our ALE scheme is based directly on a space-time conservation formulation of the governing PDE system,
hence is a direct ALE scheme. The algorithm can deal with any two-dimensional nonlinear hyperbolic
system of conservations laws that can be cast in the following general form

∂Q
∂t

+ ∇ · F(Q, x) = S(Q), x ∈ Ω(t) ⊂ R2, Q(t, x) ∈ Rν, (8)

where x = (x, y) is the spatial position vector, t represents the time, Q = (q1, q2, . . . , qν) is the vector of
conserved variables, F(Q, x) = ( f(Q, x), g(Q, x) ) is the non linear flux tensor, and S(Q) represents a non
linear algebraic source term. To discretize the moving domain, we consider an unstructured mesh T n

Ω
with

a total number NE of polygonal elements T n
i (the spatial control volumes) that covers the computational

domain Ω(x, tn) = Ωn at time tn. At each time step the new position of all the nodes is recomputed according
to a prescribed velocity and the space–time control volumes Cn

i = Ti(t)× [tn, tn+1] are obtained by connecting
via straight line segments each vertex of the element T n

i with the corresponding vertex of T n+1
i .

Then, as proposed in [7], the governing PDE (8) has been rewritten in a space–time divergence form as

∇̃ · F̃ = S, (9)

with
∇̃ =

(
∂x, ∂y, ∂t

)T
, F̃ = (F, Q) = (f, g, Q) , (10)

and it is then integrated over each space–time control volume∫ tn+1

tn

∫
Ti(t)
∇̃ · F̃ dxdt =

∫ tn+1

tn

∫
Ti(t)

S dxdt. (11)
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Application of the Gauss theorem on the left-hand side, and integration over each lateral surface of the Cn
i

gives us the final one-step scheme

|T n+1
i |Qn+1

i = |T n
i |Q

n
i −

∑
j

∫ 1

0

∫ 1

0
|∂Cn

i j|F̃i j · ñi j dχdτ +

∫ tn+1

tn

∫
Ti(t)

S(qh) dxdt, (12)

where the discontinuity of the solution at the space–time surface is resolved by an ALE numerical flux
function F̃i j · ñi j, which computes the flux between two neighbors across the intermediate space–time lateral
surface. In particular, we are going to use the Rusanov flux, so the only requirement in order to apply our
general scheme is the knowledge of the entire set of the eigenvalues of the system. Second order of accuracy
in space and time is obtained by using a MUSCL-Hancock strategy [21], together with a Barth and Jespersen
slope limiter [2].

For every further detail on the scheme we refer to [12] and the reference there in. We do not detail here
the numerical scheme because it is out of the scope of this work where we would like to concentrate on the
equation formulation. Similar results could be obtained with classical finite volume schemes able to deal
with general hyperbolic equations. However, we would like to underline that the ALE context allows us to
first employ a zero velocity mesh in order to investigate what happens in the Eulerian framework; we will
switch to a moving domain in Section 8.

4. Master-slave approach

The first method we propose consists simply in discretizing (7) by setting

Q :=


ρ
ρu
ρe
ρw

 and F(Q, x) :=


ρu

ρu ⊗ u + Ip
ρue + pu

ρwu + p(x − xc)⊥


in (8) and use our general code. We refer to the fifth equation as slave because the Euler equations are solved
independently, then angular momentum equation is computed a posteriori. This is regrettable because the
benefits of angular momentum preservation cannot be seen by the other physical variables. However, by
construction we automatically obtain the conservation in L1 norm of w as adjoint variable. See Table 2 for
some numerical results.

We would like to underline that the value assumed by w evolved through its conservation law may be
different from the exact one and from the one computed a posteriori as u ∧ (x − xc): indeed the evolution of
u and w are not linked in the master-slave formulation. For this reason the exact conservation of the total
angular momentum does not imply directly an improvement on the final results. So, to measure the impact
of our modified methods on the simulations we consider the following quantities

||w − w0||L2
=

√√√ NE∑
i=1

|Ti| (wi − w0,i)2, ||u − u0||L2
=

√√√ NE∑
i=1

|Ti| ||ui − u0,i||
2. (13)

The first one tells us if the value assumed by the variable w adjoint to the system coincides with the initial
value, and the second quantity is an indicator of the effects of w on the entire system, in particular on the
velocity. This choice is moreover justified by the fact that our tests are based on stationary solutions so the
initial values coincide also with the exact ones.

In Figure 1 we show the values of the quantities in (13) for the test case (1) at different times. Even if the
angular momentum is perfectly maintained, the velocity cannot enjoy any positive effects of including w
in the system. Therefore, in Section 5 we propose a coupled formulation in such a way that the behavior
of w and u are linked together. Before presenting the second approach which couples strongly the angular
momentum and the rest of the variables, we describe the test cases that will be used to analyze our methods.
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Table 2: In this table we report the error in L1 norm between the total angular momentum at the beginning of the simulation and
after different times. The errors refer to three different test cases: test 1 refers to the solid body rotation described in (1), in test 2 the
isentropic vortex of (14) is taken into account, and finally, in the third one we refer to the four vortexes test case described in (15). The
results show clearly the exact conservation of the angular momentum obtained with the master-slave approach both with order 1 and 2.

test 1 test 2 test 3
time order 1 order 2 order 1 order 2 order 1 order 2

1 2.6E-16 1.6E-16 9.5E-14 7.3E-14 5.5E-16 7.3E-16
5 1.0E-15 8.2E-16 1.5E-14 6.7E-14 1.6E-15 1.1E-15
10 2.1E-15 1.7E-15 3.6E-15 7.9E-14 1.1E-14 7.2E-16
20 3.7E-15 3.2E-15 1.0E-13 8.9E-14 2.1E-14 1.2E-16

0 5 10 15 20

0

0.5

1

1.5
×10

-14
||w - w0||

2

0 5 10 15 20

0

0.5

1

1.5

||u - u0||
2

Figure 1: We consider the solid body rotation described in (1) and the master-slave formulation. We have used order one and a mesh of
1600 elements. On the left we show that the L2 norm of the angular momentum remains stable for long times during the computation.
However the L2 norm of the velocity is rapidly dissipated and so the error grows. This means that with this formulation the velocity
cannot enjoy any positive effects of including w in the system.

Isentropic vortexes tests for Master-Slave
We consider a single isentropic vortex over a ring centered in the origin with radius r ∈ [1, 2]. The initial

stationary condition is given by

ρ(r) =

[
1 −

(γ − 1)β2

8γπ2 e(1−r2)
] 1
γ−1

, u(r) =
β

2π
e
(

1−r2
2

) (
−y, x

)
, p(r) = ρ(r)γ, w = u ∧ x, (14)

with r = ||x||, β = 5, γ = 7/5. See Figure 2 for the density and w profiles. In this case the center of
rotation is obviously defined and coincides with the origin. A more complex example consists in considering
four isentropic vortexes centered respectively in C1 = (2.5, 2.5),C2 = (−2.5, 2.5),C3 = (−2.5,−2.5),C4 =

(2.5,−2.5). The computational domain is a square [−5, 5] × [5, 5]. The initial stationary condition is given
by (14) with in particular

r =


||x −C1|| if x ≥ 0, and y ≥ 0
||x −C2|| if x < 0, and y ≥ 0
||x −C3|| if x < 0, and y < 0
||x −C4|| if x ≤ 0, and y < 0

, and u =


β

2πe
(

1−r2
2

) (
−y, x

)
, if xy ≥ 0

β
2πe

(
1−r2

2

) (
y,−x

)
, if xy < 0.

(15)

See Figure 3 for the density and w profiles.
For all test problems presented in this article, unless otherwise specified, the reflective wall boundary

conditions are implemented by assigning a state at the wall boundary which solves the inverse Riemann
problem at the element interface such that the normal velocity u · n vanishes at the interface. A first order
version of the code is employed in order to compare the three different approaches, in such a way to avoid
the effects of reconstruction procedures and boundary conditions in the analysis. Finally, test (1) and (14)
are run with a mesh of 1600 elements, whereas for (15) we use a mesh of 6400 elements.
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Figure 2: Density (left) and angular momentum (right) profiles for the single isentropic vortex stationary solution (14).

Figure 3: Density (left) and angular momentum (right) profiles for the four isentropic vortexes stationary solution (15).
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5. Global-coupling

In order to exploit the angular momentum preservation, we propose a coupled approach which we call
global-coupling, referring with the term global to a fixed global center of rotation and in opposition to the
local-coupling approach which will be proposed in Section 7. The global-coupling is obtained by rewriting
the Euler system as follows 

∂tρ + ∇ · (ρv) = 0,
∂t(ρu) + ∇ · (ρu ⊗ v) + ∇p = 0,
∂t(ρe) + ∇ · (ρve + pv) = 0,
∂t(ρw) + ∇ · (ρvw) + ∇ ∧ (p(x − xc)) = 0,

(16)

where
v = vr + vθ, vr =

1
r2 〈u, (x − xc)〉 (x − xc), vθ = −

1
r2 w(x − xc)⊥,

rer = x − xc, r = ||x − xc||, eθ = e⊥r ,

e = ε +
1
2
‖vr‖

2 +
1

2r2 w2,

p = (γ − 1)
(
ρe −

1
2
ρ

(
||vr ||

2 +
1
r2 w2

) )
.

(17)

The system remains hyperbolic with an adjoint eigenvalue equal to un. Moreover we propose to compute the
eigenvalues using v instead of u. Obviously, on the continuous level, one has v = u.

This formulation is obtained by noticing that, chosen a center of rotation and an orthonormal basis (er, eθ),
the velocity can be rewritten as the sum of the two components along this basis: we call v the velocity when
written in this way. In particular if u is a radial field and er lies along the radial direction then vr is null,
which is easy to maintain even at numerical level, since classically ||u||L2

rapidly dissipates. Hence, the
correctness of v strictly depends on the preservation of w. Therefore, being able to conserve w, the expected
results of employing this formulation are the following:

a) The error on v, computed a posteriori using (17), should be less than the error on u, for this reason we
introduce another indicator to measure the precision of the results

||v − v0||L2
=

√√√ NE∑
i=1

|Ti| ||vi − v0,i||
2, with v0 = u0.

b) The use of v, instead of u, in (16) should reduce the error even on ||u − u0||L2
with respect to the

master-slave approach.

On the other side the application of (16) is not trivial. First, appropriate boundary conditions should be
defined for v, w and x and moreover the center of rotation should be known. As previously, the numerical
method is built using our general solver by defining

Q :=


ρ
ρu
ρe
ρw

 and F(Q, x) :=


ρv

ρu ⊗ v + I p
ρve + pv

ρvw + p(x − xc)⊥


in (8).
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Figure 4: Consider the solid bodi rotation (1) and the global-coupling with standard reflective boundary conditions. In the middle we
report the ||u − u0 ||L2 obtained with the global-coupling where we cannot appreciate an improving with respect to the master-slave
approach (left). But instead the ||v − v0 ||L2 (right) is greatly reduced with respect to ||u − u0 ||L2 .
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Figure 5: Consider the isentropic vortex in (14) and the global-coupling with standard reflective boundary conditions. In the middle
we report the ||u − u0 ||L2 obtained with the global-coupling where we cannot appreciate an improving with respect to the master-slave
approach (left). But instead the ||v − v0 ||L2 (right) is greatly reduced with respect to ||u − u0 ||L2 .

Numerical results for Global-Coupling

We have applied the global-coupling to the test case (1) and to (14). In these two cases the center of
rotation is known and coincides with the origin. However the treatment of boundary condition is complex.
Consider a boundary element j and call i its phantom neighbor. An easy definition consists in considering
again the reflective boundary condition and moreover to set wi = w j, xi = x j, and finally recovering v
through (17). This setting guarantees the conservation of ||w||L1 . Also ||v − v0||L2

is significantly reduced with
respect to ||u − u0||L2

. Unfortunately, no positive effects can be registered on ||u − u0||L2
with respect to the

master-slave approach whose error is actually slightly increased. Refer to Figure 4 and 5 for the numerical
results.

Another possible choice for the boundary condition consists in imposing the exact solution in the phantom
element i, setting in particular xi equal to the barycenter of i. Strictly speaking we lose the conservation, but
only because there is an exchange with the outside. With this choice the performance on ||u − u0||L2

is highly
increased and at the same time ||v − v0||L2

grows slowly. Refer to Figure 6 and 7 for the numerical results.
This two test cases witness the potential of this formulation despite some intrinsic defects. For example,

trying to apply the same scheme to the four vortexes test case (15) would not improve the results, since the
center of rotation, even if it is known, is not unique. With this motivation we propose the local-coupling
approach where multiple centers of rotation can be considered at the same time. At first, we propose a way
to detect locally the center of rotation in the following paragraph.

6. Center-Detector

Let us consider a velocity field u(x) whose value is locally given at the barycenter of each control volume
Ti ∈ TΩ at any time step n. It can be described by the following relation

u(x) = ω(r)(x − xc)⊥ + ϕ(r)(x − xc), (18)

where xc is the center of rotation of the field, r is the distance from the center, ω(r) represents the angular
velocity and ϕ(r) the expansion coefficient.

9
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Figure 6: Consider the solid body rotation (1) and the global-coupling with the boundary conditions that exploit the exact solution. We
first notice the great improving on ||u − u0 ||L2 and as counterpart only a small worsening on ||v − v0 ||L2 .
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Figure 7: Consider the isentropic vortex in (14) and the global-coupling with the boundary conditions that exploit the exact solution.
We first notice the great improving on ||u − u0 ||L2 and as counterpart only a small worsening on ||v − v0 ||L2 .

The aim of this section is to propose a method able to reconstruct the center xc and the values of ω(r)
and ϕ(r), given local information about the velocity field u(x) and a radial pressure field p = p(r). To fix the
notation, let us consider an element T j and its neighbors: let L(T j) the set of neighbors of T j that shares with
T j an edge, andV(T j) the set of neighbors of T j that shares with T j a vertex. The barycenter of an element
T j is denoted by x j. All the quantities evaluated at the midpoint between two elements T j and Tk will be
denoted by a star, namely x∗j,k,u

∗
j,k, r

∗
j,k, and for the sake of simplicity by x∗,u∗, r∗ when there is no confusion.

Refer to Figure 8 for the notation. The core of the procedure is given by the following proposition.

Proposition 6.1. Let

ϕ∗j,k =

〈
u j − u∗j,k, x j − x∗j,k

〉
‖x j − x∗j,k‖2

, ω∗j,k =

〈
u j − u∗j,k,

(
x j − x∗j,k

)⊥〉
‖x j − x∗j,k‖2

.

be a local approximation of the angular velocity and of the expansion factor valid in a neighborhood of
element T j and its neighbor Tk ∈ V(T j). Then the following first order approximations hold

ω∗j,k = ω
(
r j

)
+ ω′

(
r j

)
r∗

〈
x∗ − xc

r∗
,

x j − xk∥∥∥x j − xk

∥∥∥
〉2

+ O (h) , (19)

ϕ∗j,k = ϕ
(
r j

)
+ ϕ′

(
r j

)
r∗

〈
x∗ − xc

r∗
,

x j − xk∥∥∥x j − xk

∥∥∥
〉2

+ O (h) , (20)

where h is the characteristic dimension of the elements.

Proof. We present here the proof of (19), the proof of (20) can be obtained following the same procedure.
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Figure 8: The element T j and its neighbors Tki i = 1, 2, . . . , 7, i.e. Tk1 ,Tk2 , . . . ,Tk7 ∈ L(T j).

From (18) the following equalities can be deduced〈
u j − u∗,

(
x j − x∗

)⊥〉
=

〈
ω(r j)

(
x j − xc

)⊥
− ω(r∗) (x∗ − xc)⊥ ,

(
x j − x∗

)⊥〉
=

〈
ω(r j)

(
x j − x∗

)⊥
+

(
ω(r j) − ω(r∗)

)
(x∗ − xc)⊥ ,

(
x j − x∗

)⊥〉
= ω(r j)

∥∥∥x j − x∗
∥∥∥

2 +
(
ω(r j) − ω(r∗)

) 〈
x∗ − xc, x j − x∗

〉
=

ω(r j) +
ω(r j) − ω(r∗)∥∥∥x j − x∗

∥∥∥2
2

r∗
〈

x∗ − xc

r∗
, x j − x∗

〉 ∥∥∥x j − x∗
∥∥∥2

2 .

(21)

By introducing a Taylor approximation we have that

ω(r j) − ω(r∗) = ω′(r j)
〈

x∗ − xc

r∗
, x j − x∗

〉
+ O(h2),

and so by substituting this last expression in (21) we finally obtain〈
u j − u∗,

(
x j − x∗

)⊥〉
=

ω(r j) + ω′(r j)r∗
〈

x∗ − xc

r∗
,

x j − x∗∥∥∥x j − x∗
∥∥∥
〉2 ∥∥∥x j − x∗

∥∥∥2
2 + O(h3), (22)

and dividing the two members by
∥∥∥x j − x∗

∥∥∥2
2 we easily recover (19).

The quantity 〈
x∗ − xc

r∗
,

x j − xk∥∥∥x j − xk

∥∥∥
〉

(23)

can be obtained without explicitly knowing the center xc but exploiting the radial pressure field, characterizing
any flux subject to a rotation or an expansion.
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Proposition 6.2. Let p = p(r) be a radial pressure field then

p j − p∗ =
p′(r∗)

r∗

〈
x∗ − xc,

x j − xk

‖x j − xk‖

〉
+ O

(
h2

)
, (24)

where p j = p(x j) and p∗ = p(x∗jk), with Tk a neighbor of T j .

Proof. The relation can be easily obtained as a Taylor expansion of p which has been supposed to depend
only on r.

Equation (24) can be rewritten as

p j − p∗ = λ

〈
x∗ − xc

r∗
,

x j − xk

‖x j − xk‖

〉
+ O

(
h2

)
, (25)

with
λ = ‖x∗ − xc‖

p′(r∗)
r∗

.

To simplify the notation, we remark that the two vectors in (23) and (24) are unit vectors, hence we call µ the
angle between the center of rotation xc and x∗, α = cos µ, β = sin µ, and θk the angle between x j and xk. Now
in order to obtain (23) for the element T j by exploiting (25) we propose to find α and β such that minimize∑

k∈L(T j)

∣∣∣λ (
α cos θki + β sin θk

)
− ξk

∣∣∣ , with ξk =
p j − pk

x j − xk
. (26)

Then, the two unknowns ω(r j) and ω′(r j) in (19) can be recovered by exploiting the values of ω∗j,k obtained
from all the neighbors of T j and by another minimization procedure. So, finally we have to solve

ω(r j), ω′(r j) = arg min
z1,z2

∑
k∈V(T|)

∣∣∣∣∣∣∣z1 + z2

〈x∗j,k − xc

r∗j,k
,

x j − xk∥∥∥x j − xk

∥∥∥
〉2

− ω∗j,k

∣∣∣∣∣∣∣
2

= arg min
z1,z2

∑
k∈V(T|)

∣∣∣∣∣∣∣z1 + z2

〈[
cos µ
sin µ

]
,

[
cos θk

sin θk

]〉2

− ω∗j,k

∣∣∣∣∣∣∣
2

= arg min
z1,z2

∑
k∈V(T|)

∣∣∣z1 + z2 (cos µ cos θk + sin µ sin θk)2 − ω∗j,k
∣∣∣2

= arg min
z1,z2

∑
k∈V(T|)

∣∣∣z1 + z2 cos2(µ − θk) − ω∗j,k
∣∣∣2 .

(27)

Proposition 6.3. The uniqueness of the least square solution of (27) is guaranteed if only if the number of
neighbors Tk ∈ V(T j) with different θk is greater or equal than 5.

Proof. Relation (27) can be rewritten as

ω(r j), ω′(r j) = arg min
z∈R{,2}

‖Az − b‖2

with

A =


1 cos2(µ − θk1 )
1 cos2(µ − θk2 )
...

...
1 cos2(µ − θkm )

 , z =

[
z1
z2

]
, b =


ω∗k1

ω∗k2
...
ω∗km

 , m = #V(T j), (28)
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which has a unique solution if and only if rank(A) is maximal, i.e. it is equal to two. Thus, to ensure the
uniqueness, we need that at least two elements Tki and Tk` ∈ V(T j) are such that

cos2(µ − θki ) , cos2(µ − θk` ),

which implies

µ − θki ,

± (µ − θk` )
± (µ − θk` ) + π

→ θki ,


θk`

θk` + π

2µ − θk`

2µ − θk` + π

. (29)

It is clear that if #V(T j) ≤ 4 the angles θk could be exactly linked by the relations in (29). Then we need at
least 5 neighbors along 5 different directions to ensure that rank(A) = 2.

Remark 6.4. The condition given by Proposition 6.3 is in general not restrictive and always verified by any
Delaunay triangulation, any structured grid. However, this tells us that the elements in L(T j) are not enough
to ensure the uniqueness of the solution, and so we really need to consider the set of all the neighborsV(T j).

Let us resume the fundamental steps of the algorithm: first one compute α and β through (26), then it is
possible to recover ω(r j), ω′(r j) with (27) and finally the center xc can be obtained through (18), (19) and
(20).

7. Local-coupling

As already noticed, we are interested in studying problems where the center of rotation could be unknown
or there could be more than a center, so we propose a second coupled approach, that we will call local-
coupling. The advantage of such a formulation is the possibility of defining a different center of rotation
for each element of the mesh. In this way we can treat both problems with multiple known rotation centers
and even situations for which the center is a priori unknown but only approximated from each element, and
hence affected by numerical errors. In the later case, we shall use the local center-detector proposed in the
previous section.

The difference with respect to the previous case lies in the flux computation which is done at a local level.
We propose to rewrite Euler system as follows

∂tρ + ∇ · (ρv∗) = 0,
∂t(ρu) + ∇ · (ρu ⊗ v∗) + ∇p = 0,
∂t(ρe) + ∇ · (ρv∗e + pv∗) = 0,
∂t(ρw) + ∇ · (ρv∗w) + ∇ ∧ (p(x − x∗)) = 0,

(30)

where
w = u ∧ x, w∗ = w − u ∧ x∗

e∗ =
x − x∗

r∗
, r∗ = ‖x − x∗‖,

v∗ = (u, e∗)e∗ −
w∗

r∗
e∗⊥.

(31)

x∗ is the local center of rotation. In this later case, the numerical method is defined by writing

Q :=


ρ
ρu
ρe
ρw

 and F(Q, x) :=


ρv∗

ρu ⊗ v∗ + I p
ρv∗e + pv∗

ρv∗w + p(x − x∗)⊥


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Figure 9: Consider the test case (1). Top left master-slave approach. Top right global-coupling. Bottom local-coupling with center-
detector. This example shows that the local-coupling, which employs only an approximation of the center, gives results similar to the
global-coupling procedure that makes use of the exact center.

in (8). Notice that if x∗ coincides with a unique rotation center the local-coupling method coincide with the
global one.

In practical applications, x∗ is defined on the edges of the mesh (to compute the numerical fluxes).
Logically x∗ is different at any edge of the mesh. Another possible choice, when computing the flux between
the elements j and k through the edge ` jk, consists in taking x∗ equal to the midpoint of ` jk. With this choice
the method is stable, but not significant improvements can be achieved on ||u − u0||L2

.

Numerical results for Local-Coupling

We can test the algorithm on our test (1). Our procedure results to be quite accurate in computing the
center especially when the data (i.e. pressure and velocity fields) are well discretized. Moreover we can
couple our detector with the local-coupling method. Let us call xc, j the approximation of the center obtained
through our procedure considering an element T j and when computing the flux between T j and Ti choose
x∗ = x∗i j as

x∗i j =
xc,i + xc, j

2
.

In Figure 9 we compare the quantities ||u − u0||L2
obtained with the three methods we have proposed on the

solid body rotation test case (1). This example shows that the local-coupling method, that employs only an
approximation of the center, gives results similar to the global-coupling procedure that instead makes use of
the exact center. Similar numerical results can be obtained by considering the isentropic vortex test case, see
Figure 10.

7.1. Numerical criteria for general cases

In practical implementation, it does not make sense to consider the center detected by all the elements:
because some of them could be affected by a shock in the velocity field, by an almost constant pressure, by a
field which is not perfectly radial or by a mesh configuration particularly ill conditioned with respect to the
angle of rotation µ.
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Figure 10: Consider the isentropic vortex in (14) and the local-coupling with center-detector. Even on this example this approximated
procedure gives us a reduction in the velocity dissipation.

For all these reasons we propose here some numerical criteria to understand when the center detected by
our algorithm could be considered as a good approximation of the exact one.

First of all, we can accept a result only when the pressure field in the neighborhood of the element has
really a radial shape. So we will first exclude the element across which pressure differences are too small (i.e.
less that 10−8 for example). Moreover, since the detection method is first order accurate, and from (24) we
know that α and β should be approximate with an error of the order of O(h2), if the minimization procedure
is affected by an error greater than

c1h

we will exclude this elements. Indeed, we deduce from an high variation on the estimate of α and β a non
radial pressure field in the neighborhood of the considered element.

The second limitation is connected with the least square procedure described in (27). Even in this case
we know the expected order of accuracy in the computations of ω and ω′, which is of order of O(h). We
decide to exclude all the elements for which the residuum of the least square exceeds a certain value of the
form of

c2h.

In this way we exclude the element for which matrix A in (28) is very badly conditioned.
Lastly, recover the center by exploiting (18) could be a very difficult task because it requires to inverse a

matrix whose determinant is proportional to Λ = ω2 + ϕ2. If Λ is to small, its inverse will be to big and the
final computation is badly conditioned. For this reason we will exclude from the computation all the element
for which

Λ < c3h.

While no limitations are required if the pressure and the velocity fields are radial and well approximated, in
more complex test cases the choice of c1, c2, c3 can be relevant and not trivial.

By considering the four vortexes test case (15) we have verified that our detector (without the application
of the previous criteria) fails in all the elements where the velocity field is too small to detect a radial field,
in the elements to close to the rotation center or in the diagonal direction where the mesh configuration is
particularly ill conditioned. So in Table 3 we report the results obtained by applying the numerical criteria
described above: by eliminating the elements which are not suited for our detector the algorithm maintains a
good precision in the determination of the center.

However its coupling with the local method does not give an improving on the computation of the
velocities: indeed for all the elements from which the center cannot be computed the choice of x∗ is not
clear and even the boundary conditions for x∗ and w∗ need a more sophisticated investigation. In particular
choosing x∗ equal to the midpoint when the center is not known does not increase the quality of the results
with respect to not consider w.
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Figure 11: Four vortexes test case (15). The black points represent the barycenter of the elements for which our center-detector fails.
The white areas show the location of the elements for which our detector computes the center with a good precision at different times.
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Table 3: Four vortexes test case (15). We have applied our detector with the numerical criteria described in 7.1 choosing in particular
c1 = 6, c2 = 10, c3 = 0.1. In the table we report the percentage of active elements and the mean error in the computation of the
center obtained with a Cartesian mesh with characteristic mesh size equal to 0.125 at two different times. By mean error we mean∑

j∈active elements ||xc, j−xc ||
# active elements . The error are of the order of the mesh size, as expected.

time active elements error
0 37% 0.15

1.2 33% 0.18
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Figure 12: Consider the solid body rotation (1) with boundary condition given by the exact solution. We compare the results obtained
with the master-slave approach with a zero velocity mesh (left) and the global-coupling formulation in the ALE framework (middle
and right). We can notice that even in the complex situation of a moving mesh the global-coupling allows a better preservation of the
velocity norm.

8. Coupling with ALE techniques

We underline that all the test cases presented up to now are run with a zero velocity mesh. The coupling
with the ALE techniques is not trivial: again because of the boundary conditions of the adjoint quantities
x,w, v but even because of the standard distortion problems of considering a moving domain. However,
taking into account the test case (1) and imposing the boundary conditions through the exact solution we can
see that the global formulation allows a better preservation of the velocity norm even in this context at least
for small times, refer to Figure 12.

9. A Kidder problem with rotation

A solution depending on three coefficients ρ > 0, α ≥ 0 and R0 > 0 writes
ρ0(R) = ρ

(
R2

R2
0

+ α
)
,

p0(R) = p̂
(

R2

R2
0

+ α
)2
, p̂ = 1

4ρ
R2

0
τ̂2 =

(
1 + ω2τ2

)
1
4ρ

R2
0
τ2 .

(32)

The full derivation is in the Appendix A. The other initial data are uθ(R) = ωR and ur(R) = 0. This solution
is very similar to the Kidder solution for ω = 0, but the pressure is premultiplied by the constant factor
1 + ω2τ2 to counterbalance the centrifugal force created by the angular solid body rotation.

For our test case we have chosen R2 = 1, R1 = 0.9, ρ2 = 2 and ρ1 = 1. This corresponds to a focusing
time of τ ' 0.21794 and we run the simulation until t f = 0.6τ. The initial angular velocity is ω = τ−1 so that
the pressure is, with respect to the classical Kidder solution, multiplied by a constant factor 2. The boundary
conditions are imposed by prescribing the outer exact value of density, velocity and pressure.

In Figure 14 we report the density and the angular momentum contours of our numerical solution
(obtained with the master-slave approach) compared with the analytical one.

Moreover, in Table 4 we report the errors over the density, the velocity and the angular momentum
obtained both with the master-slave and the global-coupling approaches. We underline that the results
obtained with the global-coupling do not improve the overall quality because in this test case the velocity
field has a non null radial component: so even if the angular component is approximate through the angular
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Figure 13: Kidder with rotation test case at the final time t f = 0.6τ with an Eulerian scheme. We compare the numerical solution (left)
with the analytical one (right), considering the density profile (top) and the angular momentum (bottom). The numerical results have
been obtained with the first order master-slave approach and a mesh with 6280 quadrilateral elements.

momentum, no positive effects can be seen on the radial component. However this does not prevent the
convergence of the method.

Finally, we have performed the same test moving the mesh with the fluid velocity. In particular the Cheng
and Shu node solver [9, 15] have been employed to compute the velocity of each node of the mesh. We
report our numerical results, obtained both with the master-slave and the global-coupling approaches, in
Figure 14 and in Table 5.

10. Conclusion

We have presented three different approaches in order to exploit the adjoint equation for the angular
momentum and increase the capabilities of our scheme. The conservation of the angular momentum is

Table 4: Kidder with rotation test case at the final time t f = 0.6τ with zero mesh velocity. We report the L2 norm of the error over ρ, u
and w with respect to the exact solution ρ, u, w.

mesh master-slave approach global-coupling approach
h ||ρ − ρ||L2

∣∣∣∣∣∣u − u
∣∣∣∣∣∣

L2
||w − w||L2

||ρ − ρ||L2

∣∣∣∣∣∣u − u
∣∣∣∣∣∣

L2
||w − w||L2

2.03E-04 4.15E-2 4.82E-1 7.79E-1 6.26E-2 6.96E-1 9.48E-1
9.50E-05 2.77E-2 2.99E-1 4.97E-1 3.81E-2 4.30E-1 6.09E-1
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Figure 14: Kidder with rotation test case at the final time t f = 0.6τ with the ALE scheme. We compare the numerical solution (left)
with the analytical one (right), considering the density profile (top) and the angular momentum (bottom). The numerical results have
been obtained with the first order master-slave approach and a mesh of 6280 quadrilateral elements.

Table 5: Kidder with rotation test case at the final time t f = 0.6τ with the ALE code. We report the L2 norm of the error over ρ, u and w
with respect to the exact solution ρ, u, w.

mesh master-slave approach global-coupling approach
h (t=0) ||ρ − ρ||L2

∣∣∣∣∣∣u − u
∣∣∣∣∣∣

L2
||w − w||L2

||ρ − ρ||L2

∣∣∣∣∣∣u − u
∣∣∣∣∣∣

L2
||w − w||L2

2.03E-04 4.11E-2 2.18E-1 1.90E-1 3.82E-2 5.09E-1 4.27E-1
9.50E-05 2.12E-2 1.78E-1 9.63E-2 2.56E-2 3.75E-1 3.09E-1
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Figure 15: Initial and final mesh relative to the Kidder with rotation test case performed with the ALE code [12] on a coarse mesh, with
Rusanov-type numerical flux and without nonconforming sliding lines.

guaranteed by solving the augmented system for all the presented test cases. Moreover, we have presented
some test cases where the preservation of the angular momentum allows also to maintain good velocity
profiles for long times, better than the one obtained with standard methods. This both when the center of
rotation is known and when it is approximated.

Despite the good results obtained with simple test cases on symmetric domains this work represents
only a starting point: indeed the extension to more complex situations would need further investigations.
Furthermore the center-detector could be used in other contexts. In particular one may think to use it in cases
with non stationary centers, or in combination with MUSCL-type second order reconstruction.
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A. Implosion of Kidder type with rotation

The Kidder test problem is emblematic of strong implosion in stars or for inertial confinement devices.
Starting from the standard Kidder problem, we show how to add a rotation to the initial condition. The
derivation of the analytical solution is described using the seminal method of [5]. One starts with the Euler
equations in general dimension d ≥ 1

Dtρ + ρ∇ · v = 0, Dt = ∂t + v · ∇,
ρDtv + ∇p = 0,
Dt(p/ργ) = 0.

For a flow with rotation invariance it can be recast as
Dtρ + ρr−(d−1)∂r(rd−1ur) = 0, v = urer + uθeθ,
ρDtur + ∂r p = Fcentrifugal, Fcentrifugal = ρu2

θ/r,
Dt(uθr) = 0, (conservation of angular momentum)
Dt(p/ργ) = 0.

The new feature with respect to the standard Kidder solution is the non zero angular velocity uθ. One looks
for a self-similar solution r = R f (t) with ur = Dtr = R f ′(t) = r f ′(t) f (t)−1.

One gets ρ = ρ0(R) f (t)−d where ρ0(R) is the density at time t = 0. This can be checked as follows: one
has

Dtρ = ∂t|R

(
ρ0(R) f (t)−d

)
= −ρ0(R)d f (t)−(d+1)
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and
ρr−(d−1)∂r(rd−1ur) = ρ∂rur + ρ(d − 1)r−1ur = ρ f ′(t) f (t)−1 + ρ(d − 1) f ′(t) f (t)−1

= ρd f ′(t) f (t)−1 = ρ0(R)d f ′(t) f (t)−(d+1).

By summation, one gets the continuity equation Dtρ + ρr−(d−1)∂r(rd−1ur) = 0. The adiabaticity of the flow
yields p = p0(r)(ρ/ρ0(R))γ that is p = p0(R) f (t)−γd. Moreover one has the identities

ρDtur = f (t)−dρ0(R)R f ′′(t),
∂r p = f (t)−1∂R p = f (t)−(γd+1) p′0(R),
ρu2

θ/r = f (t)−(d+3)ρ0(R)(uθ)0(R)2/R.

The Newton equation ρDtur + ∂r p = ρu2
θ/r is an identity between the above 3 terms. It yields

f (t)−dρ0(R)R f ′′(t) + f (t)−(γd+1) p′0(R) = f (t)−(d+3)ρ0(R)(uθ)0(R)2/R. (33)

As in [5], the solution is seek by separation of variables.
However a preliminary manipulation is necessary because the identity (33) is made with 3 contributions.

We equate the power of the terms which are non differential with respect to f (t) using γd + 1 = d + 3⇐⇒
γ = d+2

d = 2. One gets
ρ0(R)R f (t)3 f ′′(t) = ρ0(R)w0(R)2/R − p′0(R).

A classical solution [5] by separation of variables of such an equation is f (t) =
√

1 − t2/τ2 where τ > 0 is a
focalization time, so that f (t)3 f ′′(t) = −τ−2. It remains to discuss the reduced equation

p′0(R) = ρ0(R)Rτ−2 + ρ0(R)w0(R)2/R. (34)

We decide for convenience of a rigid body rotation which corresponds to w0(R) = ωR where ω is a given
angular velocity. Let us define τ̂−2 = τ−2 + ω2 so that (34) rewrites

p′0(R) = ρ0(R)Rτ̂−2. (35)
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