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ABSTRACT  

The development of new, accurate, 
reliable, and efficient numerical 
methods for solving hyperbolic partial 
differential equations (PDE) has become 
a central discipline in present-day 
computational science. Indeed, the 
variety and broad applicability of 
hyperbolic equations cover a wide range 
of interesting phenomena, from human 
and hearth-science problems to the 
study of stars and galaxies, usually 
involving a huge range of space and time 
scales. Thus, a continuously increasing 
interest is focused on numerical 
strategies able to model such complex 
situations and to describe 
simultaneously multi-scale turbulent 
flow features, as well as (zero-scale) 
shocks and observer-size 
macrostructures, up to astronomical 
phenomena. 

For this purpose, besides employing 
powerful software machinery and very 
high order accurate schemes, we also 
need to equip our numerical methods 
with clever strategies aimed at reducing 
particular sources of numerical errors. In 
particular, in order to reduce errors due 
to convective terms and to better track 
material interfaces and contact 

discontinuities, one can exploit the 
power of Lagrangian methods. However, 
ensuring the high quality of a moving 
mesh over long simulation times is 
difficult, therefore a certain degree of 
flexibility should be allowed in order to 
avoid mesh distortion, for example a 
slightly relaxed choice of the actual 
mesh velocity w.r.t the real fluid 
velocity, as well as the freedom of not 
only moving the control volumes, but 
really evolving their shapes and allowing 
topology and neighborhood changes. 

With this in mind, we present here a 
new family of very high order accurate 
direct Arbitrary-Lagrangian-Eulerian 
(ALE) Finite Volume (FV) and 
Discontinuous Galerkin (DG) schemes for 
the solution of general nonlinear 
hyperbolic PDE systems on moving 
Voronoi meshes that are regenerated at 
each time step and which explicitly allow 
topology changes in time, in order to 
benefit simultaneously from high order 
methods, high quality grids and 
substantially reduced numerical 
dissipation. The key ingredient of our 
approach is the integration of a space-
time conservation formulation of the 
governing PDE system over closed, non-
overlapping space-time control volumes 
that are constructed from the moving, 

regenerated Voronoi meshes: this leads 
to also consider crazy degenerate 
control volumes that only exist in the 
space-time framework, and would not 
exist from a purely spatial point of view! 

 

NUMERICAL METHOD 

Introduction. In order to model a 
wide class of physical phenomena, 
we consider a very general 
formulation of the governing 
equations, namely all those which 
can be described by 
 
(PDE) 
where    is the vector of the 
conserved variables,      the non 
linear flux,          the non-
conservative products, and   a 
nonlinear algebraic source term. 
Under this form, we can cast many 
physical models, from the simple 
shallow water system up to the 
Einstein field equations of general 
relativity. For example, in this work, 
we will present results for the Euler 
equations of gasdynamics with and 

HIGH ORDER SCHEMES ON CRAZY 
MOVING VORONOI MESHES 

Figure 1: Space time connectivity without topology changes.  
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without gravity, the 
magnetohydrodynamics (MHD) 
equations for plasma flows, and the 
GPR unified model of continuum 
mechanics. 

At the beginning of the simulation, 
we discretize our moving domain by 
a centroid-based Voronoi-type 
tessellation built from a set of 
generators (the orange points in 
Figure 1), and we represent our 
data, the conserved variables      , 
via discontinuous high order 
polynomials in each Voronoi 
polygon. Then, we let the generators 
move with a velocity chosen as close 
as possible to the local fluid velocity, 
indeed computed mainly from a 
high order approximation of their 
pure Lagrangian trajectories, with 
small corrections obtained from a 
flow-adaptive mesh optimization 
technique. Thus, since the position 
of the generators is being updated 
at any time step, also the Voronoi 

tessellation may change at any time 
step. Then, a connection between 
two successive Voronoi tessellations 
has to be established in order to 
evolve the solution in time. 

Direct ALE. The key idea of direct 
ALE methods (in contrast to indirect 
ones) consists in connecting two 
tessellations by means of so-called 
space-time control volumes                , 
and recover the unknown solution 
at the new time step           directly 
inside the new polygon        , from 
the data available at the previous 
time step        in       . This is achieved 
through the integration, over such 
control volumes, of the fluxes, the 
nonconservative products and the 
source terms, by means of a high 
order fully discrete predictor-
corrector ADER method *1+. In this 
way, the need for any further 
remapping/remeshing steps is 
totally eliminated. By adopting the 
tilde symbol for referring to space-

time quantities, our direct ALE 
scheme *2+ reads 

 

 

 

 

 

 

 

Where      is a set of moving space-
time basis functions, while           and 
            are high order space-time 
extrapolated data computed 
through the ADER predictor. Finally, 
                        is an ALE numerical 
flux function which takes into 
account fluxes across space-time cell 
boundaries         as well as jump 
terms related to nonconservative 
products. 

Figure 2: Space time connectivity with topology changes, degenerate sub-space-time control volumes and crazy sliver element. 

Figure 3: Space-time quadrature points for third order methods.  
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As evident from the numerical 
scheme, in order to compute the 
integrals with high order of 
accuracy, complete knowledge of 
the space-time connectivity between 
two consecutive time steps is 
required, as opposed to only the 
spatial information at the two time 
levels. When no topology changes 
occur, the space-time geometrical 
information is easily constructed by 
connecting via straight line 
segments the corresponding 
vertexes of each polygon, obtaining 
an oblique prism than can be further 
subdivided into a set of triangular 
oblique sub-prisms on which 
quadrature points are readily 
available (see Images 1 and 3). 

Crazy elements. On the contrary, 
when a topology change occurs, as 
in Figure 2, i.e. the number of edges, 
the shape, and the neighbors of a 
polygon change between two 
consecutive time steps, the space-
time connection between them 
induces the appearance of 
degenerate elements of two types: 
(i). degenerate sub-space-time 
control volumes, where either the 
top or bottom faces are degenerate 
triangles that are collapsed to a 
segment; (ii). and also crazy sliver 
space-time elements    . The first 

type of degenerate elements does 
not pose any problem, and was 
already treated in *3+. Instead, sliver 
elements are a completely new type 
of control volume. In particular, they 
do not exist neither at time     , nor 
at time         , since they coincide 
with an edge of the tessellation at 
the old and at the new time levels, 
and, as such, have zero area in 
space. However, they have a non-
negligible volume in space-time. The 
difficulties related to this kind of 
elements are due to the fact that for 
them an initial condition is not 
clearly defined at time     , and that 
contributions across these elements 
should not be lost at time          , in 
order to ensure conservation. All the 
details on how to successfully 
extend our direct ALE also to crazy 
elements can be found in our recent 
paper *2+. 

We would like to emphasize that 
topology changes are fundamental 
for long time simulations in the ALE 
framework and our crazy, i.e. sliver, 
elements represent a novel and 
robust way to allow for a relatively 
simple space-time connection 
around a change of connectivity. 

The predictor. The predictor step 
represents an essential ingredient 

for obtaining high order in time in a 
fully-discrete one-step procedure: it 
yields a local solution of the 
governing equations (PDE) in the 
small   , inside each space-time 
element, including the crazy 
elements. The solution is local in the 
sense that it is obtained by only 
considering the initial data in each 
polygon, the governing equations 
and the geometry of      , without 
taking into account interactions 
between        and its neighbors. Such 
local solution is given for each 
standard space-time control volume    
        and each crazy control volume 
       , as a high order polynomial in 
space and in time, which serves as a 
predictor solution, to be used for 
evaluating all the integrals in the 
(ALE) corrector step, i.e. the final 
update  of  the  solution  from       to  
          . 

A posteriori sub-cell FV limiter. High 
order schemes that can be seen as 
linear in the sense of Godunov *4+, 
may develop spurious oscillations in 
presence of discontinuities. In order 
to prevent this phenomenon, in the 
case of a DG discretization we adopt 
an a posteriori limiting procedure 
based on the MOOD paradigm *5+: 
we first apply our unlimited ALE-DG 
scheme everywhere, and then (a 

Figure 4: Stationary rotating vortex solved with our fourth order ALE-DG scheme. Density contours at t = 0 and t = 500 and position of a bunch of 

highlighted elements at different times. Note that the solution is well preserved for more than fifty complete loops and generator trajectories are 

perfectly circular! 
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Figure 5: Sedov explosion problem solved with our third order ALE-DG scheme. The topology changes maintain a high quality mesh and the 

Lagrangian framework (middle) allows to obtain a scatter profile perfectly in agreement with the reference solution and much better than what 

obtainable with an Eulerian scheme (right) of the same order. Note that our a posteriori FV limiter activates exactly only at the shock location 

(blue cells in the left panel). 

posteriori), at the end of each time 
step, we check the reliability of the 
obtained solution in each cell 
against physical and numerical 
admissibility criteria. Next, we mark 
as troubled those cells where the DG 
solution cannot be accepted. For the 
troubled cells we now repeat the 
time evolution by employing, 
instead of the DG scheme, a more 
robust FV method. Moreover, in 
order to maintain the accurate 
resolution of our original high order 
DG scheme, which would be lost 
when switching to a FV scheme, the 
FV scheme is applied on a finer sub-
cell grid that accounts for recovering 
the optimal accuracy of the 
numerical method performing a 
reconstruction step. 

 

NUMERICAL EXAMPLES  

We present here a selection of the 
variety of numerical tests available 
in *2+, in order to show both the 
wide range of applicability of the 
proposed high order ALE scheme on 
moving Voronoi meshes with 
topology changes as well as its 
novelty with respect to the state-of-
the-art. For all the presented test 
cases we have numerically verified 
that mass and volume conservation 
is respected up to machine precision 

at any time step, and that the same 
holds true for the Geometric 
Conservation Law (GCL) condition on 
each element, even when topology 
changes occur. Also, the order of 
convergence has been checked up 
to order  five. 

We want to focus in particular on 
vortex flows, see Figure 4, that give 
clear evidence of the advantages 
conveyed by the proposed 
algorithm. The correct density 
profile and a high quality mesh are 
conserved for times that are two 
orders of magnitude larger with 
respect to standard conforming ALE 
schemes, where mesh tangling 
would occur and stop the simulation 
much earlier. The position of a 
bunch of highlighted elements is 
shown at different times to make 
clear how strong the differential 
rotation of the mesh elements is. It 
also emphasizes the importance of 
allowing topology changes in the 
computational grid, which provide 
the required flexibility in order to 
preserve a high quality mesh over 
long times. Indeed, if the 
preservation of the connectivity had 
been imposed, the elements would 
have been quite distorted after 
rather short times. Finally, we would 
like to emphasize that generator 
trajectories are almost perfectly 
circular even for very long evolution 

times, which is quite an 
achievement! 

Next, the Sedov explosion problem 
of Figure 5 and the triple point 
problem of Figure 6, which are 
benchmarks for moving mesh codes, 
demonstrate how we sharply fit 
strong shocks and show the clear 
advantages of using a Lagrangian 
method with respect to an Eulerian 
one. Furthermore, looking at Figure 
7, one can appreciate the resolution 
given by our ALE-DG scheme, which 
captures, on a very coarse mesh, 
secondary structures of the Rayleigh
-Taylor instabilities developed in 
stratified flows under the effects of 
gravity. We finally present two test 
cases for physical models other than 
the standard Euler equations, i.e. 
the rotor problem, benchmark of 
the magnetohydrodynamics 
equations for plasma physics, and an 
explosion problem in an elastic solid, 
showing an application of the so-
called GPR unified model of 
continuum mechanics. 

The accuracy of our results clearly 
show that the new combination of 
very high order schemes with 
regenerated meshes that allow 
topology changes may open a new 
prospective in Lagrangian type 
methods. 

 



58 

 

EUROPEAN COMMUNITY ON COMPUTATIONAL METHODS IN APPLIED SCIENCES 

ACKNOWLEDGMENTS 

The authors acknowledge the 
financial support of GNCS-INdAM 
(Italy), University of Trento (Italy), 
DFG (Germany), and M. Dumbser, C. 
Klingenberg, V. Springel and M. 
Shashkov for the inspiring 
discussions on the topic. 

 

REFERENCES 

*1+ M. Dumbser, D. Balsara, E. Toro, and 

C. Munz. A unified framework for the 
construction of one-step finite-volume 
and discontinuous Galerkin schemes. 
Journal of Computational Physics, 
227:8209-8253, 2008. 

*2+ E. Gaburro, W. Boscheri, S. 
Chiocchetti, C. Klingenberg, V. Springel, 
and M. Dumbser. High order direct 

arbitrary-lagrangian- eulerian schemes 
on moving voronoi meshes with 
topology changes. Journal of 
Computational Physics, 407:109167, 
2020. 

*3+ E. Gaburro, M. Dumbser, and M. J. 
Castro. Direct arbitrary-lagrangian-
eulerian finite volume schemes on 
moving nonconforming unstructured 
meshes. Computers and Fluids, 159:254-
275, 2017. 

*4+ S. Godunov. Finite difference 
methods for the computation of 
discontinuous solutions of the equations 
of uid dynamics. Mathematics of the 
USSR: Sbornik, 47:271-306, 1959. 

*5+ R. Loubere, M. Dumbser, and S. Diot. 
A new family of high order unstructured 
mood and ader finite volume schemes 
formultidimensional systems of 
hyperbolic conservation laws. 
Communications in Computational 
Physics, 16(3):718-763, 2014. 

 

 

 

 
 
 
 
 
 

ELENA GABURRO, 

SIMONE CHIOCCHETTI 

UNIVERSITY OF TRENTO,  ITALY 

 

WALTER BOSCHERI 
UNIVERSITY OF FERRARA, ITALY 

 
 

ELENA.GABURRO@UNITN.IT 

Figure 6: Triple point problem solved with our third order ALE-DG scheme. 

Figure 7: MHD rotor problem, explosion problem in an elastic solid, Rayleigh-Taylor instabilities. 


