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Abstract—The time-harmonic Maxwell equations model the
propagation of electromagnetic waves and are therefore funda-
mental equations for the simulation of many modern devices
in everyday life. The numerical solution of these equations is
hampered by some fundamental problems especially in high
frequency regime. Fine meshes have to be used in order to
represent well the solution and also to avoid the pollution effect,
which is very well known for the Helmholtz equations. We
propose in this paper to address this problem by considering high
order finite element approximations and in particular Whitney
edge elements.

I. INTRODUCTION

Low order edge elements are widely used for electromag-
netic field problems, and high order edge approximation are
receiving increasing interest but their definition become rather
complex. Most of the existing constructions of high order
extensions of Whitney edge elements follow the traditional
FEM path of using higher and higher moments to define the
needed degrees of freedom (dofs). As a result, such high order
finite elements include non-physical dofs (like face or volume
moments) that are not easy to interpret as field circulations
along edges (which are the dofs in the low degree case). We
propose here a high order implementation which remove this
inconvenient feature and apply it to the case of the Maxwell’s
equations in frequency regime.

The second order formulation of the time-harmonic
Maxwell equations is given by

(−ω2ε+ iωσ)E +∇×
(

1

µ
∇×E

)
= −iωJ. (1)

where E is the complex amplitude of the electromagnetic
field supposing a periodic behaviour in time given by the
frequency ω, ε is the electric permittivity, µ the magnetic
permeability and σ the conductivity of the medium. Here
J denotes the amplitude of the imposed source of current.
Consider the domain Ω = [0, c]× [0, b] which could be a two-
dimensional waveguide and the outward normal is denoted
by n. We will concentrate on the spatial discretization of the

following boundary value problem
κE +∇×

(
1

µ
∇×E

)
= 0, in Ω,

E× n = 0, on Γm,
∇×E× n + iβn× (E× n) = ginc, on Γinc,
∇×E× n + iβn× (E× n) = 0, on Γout.

(2)
where κ = iωσ − ω2ε, ginc = 2iβEinc, Γm = {x ∈ ∂Ω, x =
0, or x = a} is the metallic part of the boundary, Γinc = {x ∈
∂Ω, y = 0}, Γout = {x ∈ ∂Ω, y = b}, β is the impedance
parameter and Einc denotes the incident field or excitation
imposed at the incoming part of the boundary Γinc.

The week formulation is obtained by multiplying (2) by a
test function v and integrating by parts. On Γm we choose
the test function v ∈ H(curl,Ω) (where H(curl,Ω) is the
space of square integrable functions whose curl is also square
integrable), such that v × n = 0 and on the other boundaries
we simply replace the impedance boundary conditions∫

Ω
κE · v +

(
1
µ∇×E

)
· (∇× v) dx

+
∫

Γinc∪Γout
iβ
µ (E× n) · (v × n) dσ =

∫
Γinc

1
µg

inc · vdσ.
(3)

We want to find an approximation of the continuous variational
problem (3). In order to do this we look for a finite dimensional
space Vh ⊂ H(curl,Ω). Suppose that Ω ⊂ R2 can be covered
by a triangulation Th where the intersection of two elements
of Th whether is empty, one edge or the whole element. The
simplest possible conformal discretization is given by the low
order Nédélec finite elements [1]. The local basis functions
for Vh are associated to the edges E from the vertex l to the
vertex m of a given triangle t of Th and they are given by

wE = λl∇λm − λl∇λm.

where the λl are the barycentric coordinates.

II. HIGH ORDER FINITE ELEMENT APPROXIMATION

We follow here the approach presented in [2]. The strategy
of building the basis functions is rather simple. Inside each
triangle of the mesh (which will be called big triangle) we
consider an increasing number of small triangles homothetic
to the big one, associated with the principal lattice of the
big triangle (see figure 1). The degrees of freedom (and the



corresponding basis functions) are associated with each small
edge of each small triangle, and they have a rather easy
physical interpretation: the circulation of the field along an
edge can be found as a linear combination of these degrees of
freedom. The orientation given by the mesh for each triangle
is counterclockwise, but in this way, for two adjacent triangles,
the induced orientation of the common edge is different
according to the triangle from which it is seen. So we have
to choose a unique global orientation for the basis functions
associated to the degrees of freedom of the unknowns vector:
each edge is oriented from the vertex with the smallest global
number to the vertex with the biggest one. If we denote by λk

the monomial λk11 λ
k2
2 λ

k3
3 , the basis functions of polynomial

degree k + 1 (order k) over the triangle t are

we = λkwE ,

for all big edges E of the triangle t, and for all multi-indices
k with 3 components and of weight k. Hence in dimension 2
we have 3 ·

(
k+2

2

)
basis functions for each big triangle.

The basis function we is associated with the small edge
e = {k, E} which can be found, given E and k, as the image
of E through the function k̃. The k̃ map, corresponding to
the multi-index k, is the homothety which maps a point x ∈ t
onto the point of t with barycentric coordinates k̃i(λi(x)) =
λi(x)+ki
k+1 . We remark that the image k̃(t) of the triangle t is a

small triangle homothetic to t (see the blue triangles in figure
1 and see figure 2 for the action of the k̃ map).

Therefore, given a multi-index k, we can build 3 basis
functions which are associated to the small edges e = {k, E}
of the same small triangle; in practice, to find the small edge
e we can think that E says that e is parallel to the big edge E,
and that each component of k says how near the small triangle
is to each vertex of the big triangle (higher is ki nearer is the
small triangle to the i-th vertex).

The orientation of the small edges e = {k, E}, and so
the one of the corresponding basis functions, is given by the
orientation of the big edge E.

Despite these basis functions are very simple to generate,
they are not linearly independent, indeed for each small
triangle which is not homothetic to the big one (the white
ones in figure 1) there is a relation among the basis functions
associated with its small edges: the sum of these functions,
each of them taken with the sign coming from the global
orientation, is zero.

Since the matrix A associated with our discretized equation
would be singular, we have to add the equations coming
from the relations described above. So we build a rectangular
sparse matrix R with (number of triangles × number of
relations) rows and (number of dofs) columns, whose non-
zero elements are only 1 and −1. Hence the linear system,
with such constraints, becomes:(

A RT

R 0

)(
u
λ

)
=

(
b
0

)
,

where u is the vector of dofs, λ is a vector of auxiliary
unknowns and b is the original right-hand side.

TABLE II
NUMBER OF DOFS FOR THE CHOSEN VALUES OF h AND k

number of dofs k = 0 k = 1 k = 2 k = 3 k = 4

h1 17 58 123 212 325
h2 33 114 243 420 645
h3 65 226 483 836 1285

h4 129 450 963 1668 2565

h5 450 1668 3654 6408 9930

Another difficulty with these elements is that the small
edges and the basis functions are not in duality via the circu-
lation. As a result, imposing a Dirichlet boundary condition
by the penalty method is not as easy as usual. Consider for
example a vector field U , whose dofs over a triangle t are
u1, . . . , un, and a Dirichlet data g. Since

∫
ei
wej · τ 6= δij , to

impose the condition∫
ei

U · τ =

∫
ei

g · τ,

where τ is the tangent vector to the small edge ei of t, a priori
we have to consider all the dofs as follows∫

ei

U · τ =
∑
j

uj

∫
ei

wej · τ =

∫
ei

g · τ.

Hence, calling I and J the global indices corresponding to the
local indices i and j, we have to set the I-th row of the matrix
to zero, add in the (I, J) positions of the matrix the non-zero
terms

∫
ei
wej · τ and set the I-th entry of the right-hand side

equal to
∫
ei
g · τ .

III. NUMERICAL RESULTS

In order to verify that our code is correctly implemented
and to compute the convergence orders, we choose as exact
solution E = (0, e−

√
µκx) and we compute the corresponding

boundary conditions to be imposed.
We report the results obtained for a guide with b = 0.00127,

c = 0.0502 and choosing as medium the air (so ε = ε0 =
8.85 · 10−12 F/m, µ = µ0 = 1.26 · 10−6 H/m and σ = 0 S·m).

We consider two high frequencies ω1 = 95 · 109 Hz
and ω2 = 110 · 109 Hz, and for each frequency we take
k = 0, 1, 2, 3, 4 and five discretization triangle diameters h1 =
1.2614 · 10−2 m, h2 = 6.4022 · 10−3 m, h3 = 3.3848 · 10−3 m
h4 = 2.0184 · 10−3 and h5 = 1.0092 · 10−3.

After solving the linear system, we reconstruct the field E
over each triangle as linear combination of the basis functions
with coefficients given by the related dofs, and we evaluate it at
the barycentre of each triangle. To compute the numerical error
of the real part, we take the maximum over all the triangles
of the modulus of the difference between the values at the
barycentres of the exact and the numerical solution.

In table I we report the numerical errors for ω1 and ω2 for
the chosen values of h and k. Looking at the bold numbers
along the diagonals we can see that to obtain an error of the
same order of magnitude we can take a coarser mesh if we
use higher degree elements. We notice also that with the same



TABLE I
NUMERICAL ERRORS FOR THE CHOSEN VALUES OF h AND k

ω1 k = 0 k = 1 k = 2 k = 3 k = 4

h1 6.2070 · 10−1 7.9900 · 10−2 1.7800 · 10−2 1.7000 · 10−3

h2 6.2330 · 10−1 7.2400 · 10−2 7.9000 · 10−3 7.7036 · 10−4 5.0610 · 10−5

h3 2.6600 · 10−1 1.3300 · 10−2 1.1000 · 10−3 4.0392 · 10−5 2.7359 · 10−6

h4 1.7490 · 10−1 4.5000 · 10−3 2.2250 · 10−4 3.2660 · 10−6 1.5927 · 10−7

h5 8.1000 · 10−2 1.2000 · 10−3 2.7838 · 10−5 2.0437 · 10−7 4.9782 · 10−9

ω2 k = 0 k = 1 k = 2 k = 3 k = 4

h1 7.1940 · 10−1 1.6720 · 10−1 3.4700 · 10−2 4.2000 · 10−3

h2 7.2750 · 10−1 1.2290 · 10−1 1.4200 · 10−2 1.5000 · 10−3 1.0719 · 10−4

h3 3.2280 · 10−1 1.8600 · 10−2 1.7000 · 10−3 7.4215 · 10−5 5.7051 · 10−6

h4 2.0720 · 10−1 6.1000 · 10−3 3.4601 · 10−4 5.8596 · 10−6 3.3144 · 10−7

h5 9.6100 · 10−2 1.5000 · 10−3 4.3207 · 10−5 3.6727 · 10−7 1.0361 · 10−8
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(a) k-convergence of the numerical error.
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(b) h-convergence of the numerical error.

Fig. 1. Convergence orders
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Fig. 2. Real and imaginary parts (see respectively top and bottom) of the
approximated field E for σ = 0 S·m.

number of dofs we get a remarkably smaller error using higher
order elements (see the boxed numbers in tables II and I).

Moreover, in figure 3a we show the semi-log plot of
the error for the considered choices of h: a super-algebraic
convergence is achieved with respect to k. We show as well
in figure 3b the log-log plot of the error for the considered
choices of k : the convergence to the exact solution is of
algebraic type and achieved with an order of accuracy equal
to k + 1 with respect to h.

Finally we report in figure 4 the real and imaginary parts of
the approximated field E obtained using k = 2 and the mesh
diameter h5. If we consider the dispersion phenomenon which
corresponds to non-zero conductivity (σ 6= 0), the amplitude
of the field decreases from left to right (see figure 5), but the
same order of accuracy is achieved.

IV. CONCLUSIONS

The high order elements described in this article are really
suitable for electromagnetism problems since their degrees of
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Fig. 3. Real and imaginary parts (see respectively top and bottom) of the
approximated field E for σ = 0.15 S·m.

freedom are physical quantities related to the circulation along
the small edges. The presented results show that they can be
used in practice as well, indeed even with a coarse mesh we
obtain a small error with respect to the exact solution and we
achieve a good order of convergence.

Moreover, both the Dirichlet and the impedance boundary
condition are implemented to impose the physical conditions
which are typical of a waveguide problem.

A relevant feature of our implementation concerns the
treatment of the linear dependence of the basis functions:
indeed we didn’t arbitrarily choose the redundant ones to be
eliminated, but we built a new matrix to describe the relations
among them in order to elegantly incorporate these constraints
in the system.

This work could be a starting point for the implementation
of high order edge elements in the PDE solver FreeFem++.
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